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Abstract--The problem of heat and mass transfer around an evaporating water drop located in a superheated 
steam flow is studied using singular perturbation methods. 

The perturbation scheme involves three regions and some results concerning the Nusselt number and the 
drag coefficient of the drop are presented. 

INTRODUCTION 
The study of heat and mass transfer in the vicinity of an evaporating liquid droplet moving in the 
vapor of the same fluid is of great interest for a fundamental approach of some phenomena 

encountered in power plants. For instance, in certain types of desuperheaters, water drops are 
injected into the core of a superheated steam flow in order to control the temperature and a 

knowledge of the behaviour of drops injected in such conditions is important. 
It is particularly interesting to compute the drag coefficient and the Nusselt number of an 

evaporating droplet in order to evaluate the momentum and energy interaction terms between 
both phases of a two-phase flow. 

A great many studies concerning drops have already been performed but most of them deal 
with drops moving in an atmosphere different from the vapor corresponding to the liquid. In such 

cases the phenomena involved are essentially diffusion phenomena. Very few authors (Ross 
1966; Fendell et al. 1966) have tried to analyse the pure multiphase thermal transfer problem 
which is going to be considered; generally, they assumed the form of the velocity field around the 
drop and solved the heat transfer problem. In fact, the dynamic problem and heat transfer 
problem are strongly connected through the interface conditions at the surface of the drop and it 
is certainly incorrect to study one problem independently of the other. A correct analysis of the 
interactions between a drop and the surrounding vapor implies the determination of the velocity 
and temperature fields near the surface of the drop. So, an attempt is made here to set up a 
method which leads to a complete solution of the governing equations of a simple model 
elaborated with suitable assumptions. 

STATEMENT OF THE PROBLEM 

Consider a drop of liquid in a uniform flow of the corresponding steam, the properties of 
which (temperature, pressure, velocity) are known far from the drop, and try to analyse the steam 
flow as well as the heat and mass transfer phenomena involved. More precisely, we will attempt 
to determine the velocity and temperature fields around this drop in order to compute the drag 
coefficient and the Nusselt number. These coefficients express the result of the dynamic and 
thermal interactions of this drop with the surrounding steam. 

A reference system, connected with the center of the drop is used. The coordinates are 
axisymmetric; r is the vector radius of a point, 4~ is its colatitude and tr denotes cos d~. In this 
reference system, the vapor velocity at infinity is uniform and the problem is axisymmetric; the 
velocity and temperature fields may be determined in a meridian plane. 
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U~ 

The following assumptions are made: 

At the interface, thermodynamic equilibrium conditions prevail. The steam pressure is thus 
not very different from the pressure at infinity and the interface temperature equals the saturation 
temperature corresponding to this pressure (Montlucon 1972). 

The drop remains spherical and the temperature of the liquid is uniform and equal to the 

saturation temperature• 

This hypothesis is valid only if the following inequalities apply: 

A A A U ~  2 Re=PU~2R,>I; We=OU~22R~l; F r = - ~ , > l  
"0 o" 

which is the case for very small droplets (2R - 50-100 ~m). Physical properties of the vapor are 
considered to be constant. There is no buoyancy and, in our frame of reference, the liquid 
velocity is negligible compared with the steam velocity. Buoyancy effects can be neglected if the 
following inequality applies: 

Fr' ~ U~2 = ,>1 T~-Ts 
T~ g2R 

which is the case for very small droplets (2R - 50-100 ~m). The evolution of the system may be 
represented by a succession of steady states. The variations in the drop radius R and in the 
relative velocity may be determined from velocity and temperature fields which are solutions of 
the stationary problem whose parameters are the instantaneous parameters of the real system. 
Consequently, partial derivatives with respect to time may be neglected in the governing 
equations and stationary boundary conditions may be considered. In a previous study, 

Montlucon (1972) showed that, for a motionless droplet evaporating in superheated steam, the 
analytical solution based on a succession of steady states was in good agreement with the 
numerical solution of the complete equations. This assumption is now extended to a moving 
droplet. 

These hypotheses are valid for water drops evaporating in superheated steam. A complete 
justification may be found in Montlucon (1972). 

METHOD OF SOLUTION 

On the basis of the above assumptions, we are dealing with the determination of the velocity 
and temperature fields in the steam surrounding the drop. For this axisymmetric problem, the 
Navier-Stokes equations and the energy equation may be written in a classical form which is 
used by Berker (1963) and Fendell et al. (1966): 

uD4~ +(1 - g2)L (~, ~) = 0 1 

aV2T+~H(~, T ) = 0  . 

[1] 
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is the Stokes stream function and T the temperature of the steam r and tr are the coordinates 
of a point in a meridian plan as represented in reference system (or = cos ~). v represents the 
kinematic viscosity of the steam and a its thermal diffusivity. D z, L, V 2 and H are functionnal 

operators defined below: 

D2¢ O:f~_ l - t r  2 02f 
J =  ~ r  2 ~ r 2 00  .2 

L ( f , g ) =  H ( f ,  D2g r2(1 Z-~,:)/ 

D(f, g) (Jacob,an) H(f, g) = D(r, ~r) 

1 ((1 - V2f=-~  [--f-~r / 2 afN ' t9 ~r ~rr } • -~---~ tr2) ~-~)]. 

The system [1] is completed by the following boundary conditions: 

T ( R , a ) =  r~ -~(R, cr)=0 ~ - ~ ( , ¢ ) = p - ~ - ~ - ~ ( R , ¢ )  

2 

Lim T(r, a)  = T~ Lim $(r, ~) = U~r ~ (tr - 1). 
r ~  r ~  2 

R is the radius of the drop. A and p are the conductivity and the density of the steam, 
respectively. AH represents the latent heat of vapor, sat,on and U the steam velocity. Subscript s 
characterizes the surface of the drop and subscript ~ characterizes infinity. 

In order to find an analytical solution for this system, a singular perturbation method may be 
used. Such a procedure is now classical and our notations are those adopted by Van Dyke (1964). 
A solution is sought in the form of a set of asymptotic expansions in relation to a small parameter 

involving the steam velocity far from the drop. Every expansion is valid in a region D, which 
may be scaled by the order of magnitude Lo.~ of the vector radius of one of its points. A physical 
interpretation of the regions D~ is given in the next section. In a region D, the unknown variables 
of the problem ~b and T - Ts have the order of magnitude ~bo., and To.,. From a general point of 
view, a region D~ and the solution which is valid in it, may be characterized by three 
dimensionless parameters: 

Lo,, aLo,, To,, 
0, = ~ ~, = $o,, r, = T~_  % 

In a region D,, [1] may be written in a dimensionless form: 

,~,D?¢, + Pr-l(1 - tr2)L, (t~,, ~,) = 0 

1 H,(~,, T,) = 0 ~i V,: T, + r~ 

[2] 

where 

T - T~ r - $ T , -  [3] 
r'=-~o.~ $'-$o.---T To,, 

The functional operators Dr, H~, L, and V, 2 are identical to the functional operators D 2, H, L and 
V 2 but the dimensionless variable r, is used instead of r. 

System [2] must be completed with boundary conditions which, according to the region D, 
under consideration, may be matching conditions between asymptotic expansions or boundary 
conditions deduced from the boundary conditions of [1]. 

When writing of systems analogous to [2] and corresponding boundary conditions for the 
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different regions D~ which must be considered in order to find a complete solution, three 
dimensionless quantities appear which are characteristics of the physical problem. 

The Prandtl number Pr = via is a property of the fluid. 
The superheat parameter B = (H~ - Hs)/AH, where H represents the specific enthalpy of the 

steam, is characteristic to the thermal conditions of the problem. It appears in the boundary 
conditions on the surface of the drop. 

In the case of evaporation of water drops in superheated steam which is the problem under 
consideration, the Prandtl number and the superheat parameter are fixed and of the order of 
unity. The third dimensionless quantity is the Peclet number Pe = RU~/a, which represents the 
dynamic conditions of the problem and is used as the small parameter of the different asymptotic 
expansions. 

The first order approximations are solutions of the equations obtained by letting the small 
parameter Pe tend towards zero in [2]. It can be expected, as in most perturbation problems, that 
these equations have a simplified form compared to that of the governing equations of the 
problem. When Pr is fixed, [2] depend only on the dimensionless parameter ~, characteristic of 
the region of validity D~. The only possible "simplified forms" of the governing equations are 
presented in table 1. 

Table 1. Simplified forms of the governing equations 

1 ~, = o(1) ~, = Ord (1) ~ = o(1) 

Ideal fluid equation Navier-Stokes equation Stokes equation 
Convection equation Conduction-convection equation Conduction equation 

Stokes equation (ideal fluid equation) obviously names the equation verified' by the Stokes 
stream function when the inertia terms (the viscous terms) are neglected. Moreover, the 
conduction equation (convection equation) names the equation verified by the temperature when 
convection terms (conduction terms) are neglected. 

Fendell et al. (1966) studied heat transfer around a sphere with mass transfer at the surface of 
the sphere. In their solution, the "simplified form" of the governing equations whose solution is a 
first order approximation in a region next to the sphere is made up of a Stokes equation and a 
conduction-convection equation. According to table 1, this is not a correct scheme. 

For the problem which is examined here, the solution corresponding to a zero velocity far 
from the drop is classical: 

tp = aR log(1 + B)(1 + o') 1 

T - T~ 1 + B ~ -alog(l+B) e-lOg(l+B)] 
T ~ - T ~ -  B te~ - " 

[4] 

Equations [4] written in dimensionless form are the first terms of asymptotic expansions which 
are valid in a region D, next to the drop. In this region, Lo.t = R, ~o.1 = aR and To.i = T. - T,. D1 
and the asymptotic expansion valid in D1 are characterised by the three dimensionless 
parameters 

~ l= l ,  01=1, r ) = l .  

Table 1 shows that the "simplified form" of the governing equations is actually not simplified 
at all. The first order approximation is a solution of the complete equations and only the spherical 
symmetry enables this external problem (Van Dyke 1964) to be completely determined. 

This first approximation is not valid throughout the region around the drop because the 
boundary conditions relating to the Stokes stream function cannot be satisfied. The problem 
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under consideration is in fact a singular perturbation problem; so another asymptotic expansion, 
valid in another region D; # D1 characterized by three dimensionless parameters 

aLo,2 Lo.2 To,2 
~s= 0o. ~, 0 s=-~  ---, r 2 = T ~ _ T  ~, 

must be determined. 
In this new region, the first order approximation of this new asymptotic expansion is a 

solution of equations having a "simplified form" and satisfies, on one hand, the boundary 
conditions at infinity and on the other hand, the matching conditions with the first order 
approximation of the previous asymptotic expansion valid in D,. In order to determine the 
"simplified form" of the governing equations which must be considered, the consequences of the 
existence of an intermediate region D., in which the two expansions are simultaneously valid are 
examined (Francois 1969). D,, and the solution which is valid in it are characterized by the three 
parameters ~,,, 0,, and ~',,. Assume that: 

~bl=Ord(Fl(o,)rl"') and Tl=Ord(Gl(o')rl"') when r l ~  

q/z=Ord(F2((r)r2 ~) and T2=Ord(G2(~)r2 "~) when r2~0. 

The numbers m~, nl, the functions F,(a) and Gl(cr) are known and the corresponding numbers 
and functions ms, n2, F2(cr) and G2(~r) are sought. The different asymptotic expansions are 
expressed in their common region of validity D,, using the corresponding dimensionless space 
variable r,,. 

Lo.i Fl(cr) (0,,'~"' . 1  Lo.2 F2(o') {0~'~ ~ 
~--T \011 r,. = ~2 \02]  r""~ 

(Olql~ nl ?11 To .2G](o- ) (~)  112 
To.,Gl(~r) \ 0 , /  r,. = \v2/  r""~" 

Hence, the following relations may be inferred: 

ml  = m2 

F,(cr) = Fs(cr) 

~, ( 0 q " - '  

r/1 = n2 ] 

G,(o'~ = Gs(o') 

r., (0,~ ' 
~\E] = I . 

[5] 

In the present case, ml = nl =0, ~: = 01 = rl = 1 and, in the domain D;, ~0o.2 = U~Lo.2.2 The 
parameters characteristic of the region D~, and of the solution which is valid in it may now be 
inferred: 

~2= Pe -'12 02= Pe -1Is r2= l. 

1/~¢~ = o(1) and table 1 shows that the suitable simplified form of the governing equations is 
necessarily made up of a Stokes equation and a pure conduction equation. The first order 
approximations of the two asymptotic expansions valid in the two regions D1 and D~ may be 
written: 

in the region DI: 

0, = log (1 + B)Qo(cr) + o(Pe) I 

_ 1 + B [e_tOo, l+B)/,: _ e-lO, l+s] + o(Pe) 
T1 = -----if- 

[6] 
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in the region D~: 

~2 = log (1 + B)Qo(~) + (Cr2 + r22)Q,(~r) + o (Pe)] 
T2 = I + o (Pe )  J 

[7] 

where C is an integration constant which is determined later and Q~(tr) are Gegenbauer 
polynomials. 

Approximations of higher orders of these two asymptotic expansions may be constructed but 
the classical Whitehead paradox is then encountered and it is impossible to determine an 
approximation of order Pe satisfying the boundary conditions at infinity. The determination of an 
asymptotic expansion valid in the region D~ must be replaced by the determination of two 
asymptotic expansions valid respectively in two regions D: and D3 (D~ = D2 t_J D3) and satisfying 
boundary conditions and suitable matching conditions. 

Using the method which leads to [5] and replacing the subscripts 1 and 2 by subscripts 2 and 3, 
the parameters characterizing these new regions and the solutions which are valid in them may be 
inferred 

~3 = r32Q~(~) + o(Pe)'~ 
T3 = 1 + o (Pe)  J" 

[8] 

The first order approximation of the complete solution valid around the drop is made up of the set 
of functions [6], [7], [8]. The "simplified forms" of the governing equations verified by these 
functions are a Stokes equation and a pure conduction equation in the intermediate region of 
validity D2 and complete equations in the extreme regions of validity D1 and D3. The problem 
being considered is thus a problem of singular perturbation with three regions. A physical 
interpretation of this conclusion is given below. 

P H Y S I C A L  I N T E R P R E T A T I O N  

Consider the governing energy equation: 

1 
a V 2 T  + ~ H ( O ,  T)  = O. 

T 

In a region D~ characterized by the orders of magnitude Lo.~, ~bo.~, To,s, the ratio of the 
convection term to the conduction term has the following order of magnitude: 

 on uc iontorm 
Convection term 

In the region D1, this ratio equals 1; the conduction term and the convection term retain the 
same order of magnitude when Pe tends towards zero. In the region D2, this ratio equals Pe-~12; 

the conduction term is predominant when Pe tends towards zero. 
In the region D3, this ratio equals the Prandtl number. For Prandtl numbers which are of the 

order of unity as those examined here, the conduction term and the convection term retain the 
same order of magnitude when Pe tends towards zero. 

A similar analysis may be performed for the dynamic equation and the ratio of the viscosity 
term versus the inertia term has the order of magnitude 

Viscositytorm 
Interia term - Ord = ~:iPr -~. 
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(;2 = Pe-~t2, 02 = pe-mn, T2 = 1 

~3 = Pr -l, 03 = PrPe -~, ";3 = 1. 

In the region D2 the "simplified form" of the governing equations is the same as the simplified 
form determined in.D[. The corresponding first order approximation is [7]. 

In the region D~ the "simplified form" of the governing equations is not more simplified than 
in the domain D~. In this case the solution of these equations is trivial and accounts for a uniform 

flow with uniform temperature. 
In the problem considered here, Pr = Ord (1) and the following conclusions may be reached: 

In the region D2, the viscosity term is predominant and in the regions D~ and D3, the viscosity 

term and inertia term are of the same order of magnitude. 
It is thus natural to divide the region around the drop into three regions: D~, D2, D3 scaled 

respectively by the reference lengths R, RPe -~/2 and RPe- 'Pr .  In the region D2 the viscous and 
conductive transfers are predominant and in the regions D~ and D3 they are of the same order of 
magnitude as inertia and convective transfers. 

These conclusions are incorrect if P r #  Ord (1). In this case it is necessiary to consider a 

fourth region D4 scaled by a new reference length RPe -~. 

THE SOLUTION 
A solution to the problem is determined in the form of six asymptotic expansions with 

respect to the Peclet number of the drop. These six asymptotic expansions (three for the Stokes 
stream function and three for the temperature) satisfy the matching conditions and the boundary 
conditions of the initial problem. The gauge functions vj(Pe) are progressively determined with 

the solution. 
In the three regions D,, D2, D3, [2] are written replacing 0, and T, by their asymptotic 

expansions: 

6, = E O,.iuj(Pe) T~ = E T~.~vj(Pe). 

Three sets of systems of partial differential equations with r and tr are thus obtained. A 
decomposition of the variables on a complete base of orthogonal functions of a makes it possible 
for every successive approximation to deal with differential equations in the space variable r~. 
The base of Legendre polynomials P~ (or), the eigenfunctions of the operator V 2, is used in the 
determination of the temperature. The base of Gegenbauer polynomials, the eigenfunctions of 
the operator D z is used for the determination of the Stokes stream function. 

The resolution of these sets of equations is particularly tedious and was carried out up to the 
order Pe 2 (inclusive for the temperature, exclusive for the Stokes stream function). Details of the 
solution may be found in Montlucon (1972) and are not given here. 

The first terms of the asymptotic expansions valid in the region D1 next to the sphere have been 
determined 

T, = ~d ~ /T , x , ( r , l v , (Pe )Pk (o ' )  } 

~b, = ~ ,  ~ ,  qJ,.k.,(r,)vj(Pe)Qk(a). [9] 
k j 

These expansions are essential in order to determine the total interaction quantities that are the 
Nusselt number of the drop and its drag coefficient. 

As far as the temperature is concerned, only the component Tl.o is necessary for calculating the 
Nusselt number of the drop: 

1 + B [ _t,o~(l+m,r 0 (1 - e-l°a(l+B)°-'/") + log (1 + B) / 

T"° =---B--Le.(1 -~)1 (~e H,(BPr)-~ PeZlogPe) + Tl.o.,(B, Pr, rOPe2+O(Pe3logPe))]. ] [10] 
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@, = log(1 + B)Qo(cr)+ [l°g (2+ B)Qo(cr)+log \(H=(B'Pr)(1 + B)r' H,(B,~- r'2 +Pr)Qo(cr)Pe 2Hl(B'Pr)Z(rO)log Pe +Q'Cr]o(Pe 2)Pe } 

3 
where: 

with: 

log r+ ~ ,  a_.~. 
Z(r) = r + al + a2 r ."%= r" 

[11] 

3 log (1 + B) 4 log (I + B) (n - 3)(n + 2) log (1 + B) 
a, = 4 Pr a2 = --1-5 a' P, a" - (n - 2)(n + 3)(n + l) Pr a,_,. 

The functions H,(B,P,), H2(B, Pr), T1.o.5(B, Pr, r,) are numerically determined during the 
construction of the asymptotic expansions (Montlucon 1972). 

RESULTS 

Determination o[ the Nusselt number 
The Nusselt number which is representative of the thermal interactions between the drop and 

the surrounding steam is calculated from: 

f~' aT, 1 dT,.oj(1) vj(Pe). N u =  -~-~r( ,cr)dtr = 2 ~  dr-----~ 

Using [10], the following is obtained: 

Nu = 2 log 1 + B r 1 .+ 
B L 

Pe2 H,(B,3 Pr) pe 2 log Pe + H3(B, Pr)Pe 2] + O(Pe 3 log Pe). 

The functions H, and H3 were computed and their variations with respect to the superheat 
parameter B for different values of the Prandtl number Pr are presented on figures 1 and 2. The 

2.1I 
P r -  0 . 7  

\ P r - l  

- H  I I. 

o.51 

Pr='2 \ 
P r = l O  

I I d I i I i I 
0'2 0.4 0 6  0.8 

B 

Figure 1. Values of the coefficient H, as a function of the superheat parameter B and the Prandtl number Pr. 
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2 

1.5 

H a t pr = 0 7....~._,.....=~-- 

0.5 ~ P r  =10 

L I i I i 1 i I 0-2 0.4 0-6 0"8 
B 
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Figure 2. Values of the coefficient H3 as a function of the superheat parameter B and the Prandtl number Pr. 

conclusion of the analysis made by Gupalo & Ryasantsev (1972) are obtained in the case where 

Pr = 1 and B --0 (no mass transfer). 

3 
H,(0, 1) = - ~ H3(0, 1) = 0.592. 

The total variation of the Nusselt number as a function of the superheat parameter B is presented 

in figure 3 for different values of the Peclet number Pe in the case Pr  = 1. 

Determination of the resistance coefficient 
The resultant F of the forces acting on the drop in this axisymmetric problem is parallel to U= 

and has the following form. 

' 

+ - - - ~ 2  (1, o')tr ]do" 

I 
2 . 5 ~  

Nu 2 ~  Pe=O.l 

1.5 

I I I I 0.2 0.4 0.6 0.8 
B 

Figure 3. Nusselt number as a function of the superheat parameter B and the Peclet number Pe(Pr = 1). 
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2 r/ represents the dynamic viscosity of the steam and p, = pR /*lqJo., is a dimensionless form of 
the pressure p. This resultant force is divided into three parts F = F, + F: + F3. F, is the result of 
the pressure forces acting on the drop: 

F, = 2rrta - P , ( 1 ,  ¢)tr  d~r. 

F= is the result of the mass transfer forces acting on the drop. 

Y? ,Y F2 = 2Irma - Pr  -~ 1, o" o" do-. 
I 

F3 is the result of the friction forces acting on the drop. The corresponding fractions of the total 

drag coefficient Co on the drop is calculated from Co = Cop + Cr,M + CoF. CDp corresponds to 
the pressure forces, Cou corresponds to the mass transfer forces and CDF corresponds to the 
friction forces. Using the asymptotic expansion [11]. the following results is established where 

Cos is the Stokes drag coefficient corresponding to an isothermal flow without mass transfer: 

___[ CDp 1 2HdB, Pr)-H,(B, Pr) d--~3(1)+ - - ~ , / - 4  
Cos 9 

+Pr-' 2HffB, Pr)+2+HdB, Pr)~r2(1)log(l+B) + O r d ( P e )  

Com- A 
Pr ' [HffB, Pr) + 2 + H,(B, Pr)Z(1) log (1 + B)] + Ord (Pe) 

C~s 

CDF 1 HdB, Pr) ro d2Z(1) ] CDs = 9 L" ~ -  4z(1) + Ord (Pe). 

The functions H1(B, Pr) and HffB, Pr) were computed and the variations of the four functions 
CDp/CDs, CDM/CDs, CoF/CPs and Co/CDs as functions of the superheat parameter B are 
presented for different Prandtl numbers on figures 4-7. When B = 0 the Stokes result is obtained: 
CD/CDs -- 1. The evaporation of a drop results in a decrease of its drag coefficient from its Stokes 
value. The pressure term remains practically constant and the friction term decreases when the 

P r = l O  

0.6 

olJ 
0.4 

0-2 

0.8 

I I I I 
0.2 0.4 0"6 0 6  

B 

Figure 4. Total drag coefficient as a function of the superheat parameter B and the Prandtl number Pr. 
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0,4 
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Pr = I 

P r = 2 /  

Pr= lO 

I I I I 
0 0'2 0.4 0"6 0"8 

B 

Figure 5. Pressure term of the drag coefficient as a function of the superheat parameter B and the Prandtl 
number Pr. 

J I J  o.5 

Pr= lO 

J I I I I I i I 
o 0.2 0 4  o.s o 8  

B 

Figure 6. Mass transfer term of the drag coefficient as a function of the superheat parameter B and the 
Prandtl number Pr. 

0"6 

t,.) (..) 

0.4 

I I I I 
0 0"2 0.4 0'6 0'8 

B 

Figure 7. Friction term of the drag coefficient as a function of the superheat parameter B and the Prandtl 
number Pr. 
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superheat increases. Resistance due to mass transfer increases a little (Cou > 0) when this mass 
transfer is low; when it becomes more important this resistance decreases (CoM < 0). 

C O N C L U S I O N  

The evaporation of a water drop in a superheated steam flow is a pure multiphase heat and 
mass transfer problem which can be handled by singular perturbation methods. Three regions 
must be considered in order to get a correct approximation of the complete solution in the form of 
asymptotic expansions using the Peclet number of the drop as a small parameter. 

The determination of the first terms of the expansions of the temperature and of the Stokes 
stream function leads to semianalytical expressions for the Nusselt number and the drag 
coefficient of the drop. From these expressions it can be concluded that the Nusselt number as 
well as the drag coefficient are decreasing functions of the superheat of the steam. 

Such results, which were confirmed by the experimental results (Montlu~on 1972) give 
information on the interactions between phases, which can be used in the theoretical modeling of 
two-phase flows. 
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R6sum6--On 6tudie par une m6thode de perturbation singuli6re les transferts de chaleur et de masse autour 
d'une goutte d'eau s'6vaporant dans un 6coulement de vapeur surchauff6e. 

Le sch6ma de perturbation comporte trois domaines. On calcule le hombre de Niisselt et le coefficient de 
tra~n6e. 

Auszug--Der W~irme- und Stoffaustausch um einen Wassertropfen, der im iiberhitzten Dampfstrom 
verdampft, wird mit Hilfe singul/h'er Perturbationsmethoden untersucht. 

Das Perturbationsschema umfasst drei Gebiete. Mehrere Ergebnisse, die die Nusseltsche Kennzahl und 
den Widerstandsk6ffizienten des Tropfens betreffen, werden mitgeteilt. 

Pe3~OMe---MeTo~IOM elltlHttqHblX BO3MylIIeHH~ H3y'~eHa npo6JaeMa TenJ~oMacconepeHoca 
B6an3~I ncnap~rome~ca Kannn, BO~bI, naxo~att te~ca B nOTOKe neperpeToro napa.  

CxeMa TaKHx BO3MylIIeHIt~ BKn}oqaaa B ce6a Tpli HeKOTOpblx yqacTKa. B pa6ore  npellcTaB- 
~eHbI qacTri~frlbIe pe3ynbTaTbI OTriOCnTenbHO KpHTepaa HyccenbTa n Koaqb~rxaneHTa ynoca 
xanenb.  


